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A computationally efkient method for computing the velocity field due to a distribution of 
vortex blobs is presented. The method requires fewer calculations than the straightforward 
vortex method velocity procedure and does not sacrifice the higher-order accuracy which can 
be achieved using higher-order vortex core functions, c 1956 .Acadmuc Press, Inc 

INTRODUCTION 

In the 2-dimensional vortex blob method [2, 7, 8, 163 the motion of an incom- 
pressible fluid is approximated by calculating the motion of a finite number of vor- 
tices of finite core, or vortex blobs. If we designate the centers of the vortices by 
~&t) and their strength by oi then the evolution of -u,(t) is calculated by solving the 
ordinary differential equations 

(l.i! 

where K, is the velocity field induced by a single vortex blob, and i = 1 .. Y. 
Equation (1.1) represents the fact that the velocity of each vortex is the sum of the 
velocities induced by all the other vortices. The convergence results given in [I, 3, 
141 state that under certain assumptions about the core structure of the vortices. 
the motion of the centers of the vortices calculated using (1.1 j closely approximates 
the exact motion of the fluid particles with which the centers are associated. It is 
also shown that the velocity field 

j= I 
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closely approximates the exact velocity field. Theoretical results [l, 31 and 
numerical experiments [4, IS] indicate that the form of the core structure of the 
vortices is a critical factor in obtaining higher-order accuracy. 

In the numerical solution of (1.1 ), it is necessary to evaluate the approximate 
velocity field (1.2) for each of the points xi(t). Therefore, for N vortices the method 
requires O(N2) operations per time step. The purpose of this paper is to present an 
algorithm for reducing the operation count of the method from OjN’) to 
approximately O(M log M) + O(N) where M is a constant independent of the num- 
ber of vortices. Furthermore, if one is using a higher-order-accurate vortex method, 
such as those suggested in [4], then this higher-order accuracy is preserved by our 
algorithm. 

The central idea of the method is to calculate the motion of the centers of the 
vortices by solving the set of equations 

hi(t) 
- = 6(x,(t), t) 

dt 

where ii(x, t) is an approximation to (1.2) and is chosen so that the evaluation of it 
at the points x,(t) requires less than O(N2) operations. 

Our construction of a ti(x, t) is based upon the observation that the difference 
between the velocity field due to a point vortex and a vortex blob located at the 
same point in space becomes very small as one moves away from the centers of the 
vortices. This is evident if one compares the formula for the velocity field due to a 
point vortex and the formula for the velocity field of a vortex blob. In fact, if the 
vortex core is radially symmetric and has its support contained in a ball of radius S, 
then the velocity fields of the blob and the point vortex differ only inside the ball of 
radius S about their common center. (We will assume for the rest of this paper that 
the core functions are of compact support. For core functions that are not of com- 
pact support, but rapidly decaying, such as those presented in [4], the errors 
introduced by this difference are negligible and the basic results are the same.) In 
light of this observation, our method consists of constructing a velocity field due to 
a collection of point vortices and then modifying (correcting) the velocity field 
about the center of each vortex. The efficiency of our method is due to the fact that 
we use a technique for constructing and evaluating the velocity field due to a collec- 
tion of point vortices that requires only O(N) + O(M log M) operations. Since the 
corrections to the velocity are confined to small regions about the center of each 
vortex, the correction step requires approximately O(N) operations and we obtain a 
method of O(Mlog M) + O(N) operations. Also, we are enforcing the velocity field 
due to a specific core structure in the last step, so the method preserves the effects 
of the higher-order core functions. 

The problem of finding a rapid way of calculating the velocity field due to a 
collection of point vortices has received much attention. One popular technique is 
the cloud in cell method (CIC), presented by Birdsall and Fuss [S], and its 
improvements, such as those presented in [6, 9, 121. Furthermore, the idea of 
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locally correcting the velocity field that one obtains using a CIC-type method is 
similar to the central idea of the particle-particle/particle-mesh (PPPM) method 
described in [15]. For a review of PPPM methods see [ 131. Although we follow 
closely some of the ideas presented previously, in our calculation of the velocity 
field due to a collection of point vortices we take advantage of some special features 
of the problem that have previously been neglected. Specifically, we use extensively 
the fact that the velocity field induced by a point vortex is harmonic away from the 
center of the vortex. 

In the first section we present our method and in the second section we give the 
results of some computational experiments. Since the basic idea of the method is to 
locally correct the velocity field, we shall refer to our method as a method of local 
corrections. 

DESCRIPTION OF THE METHOD 

Before we begin the discussion of our method it is necessary to show how to con- 
struct the velocity field from a given distribution of vorticity. 

If we denote the velocity by u = (zll, u2), then the incompressibility condition 
i;u,,!dx + &JL$ = 0, implies that there exists a stream function Y such that 

Since the vorticity o is defined as 

then we have the following relation between the stream function and the vorticity: 

Equations (2.1) and (2.2) are used to determine the velocity due to a distribution of 
vorticity 0. 

In the vortex blob method, the vorticity can be considered as a sum of blobs. If 
the blob or core function is given byf,, 6 a parameter that determines the core size. 
then the assumed vorticity distribution is given by 

where x,(t) is the center of the jth blob and wj is the strength of the jth blob. If we 
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use the fact that in 2 dimensions the fundamental solution of Laplaces equation is 
G = (1/2n) log r, where r = (x2 + y*)i/“, then 

Y= G * [ i f&x-xj(t)) coj] 
j-l 

N 
= c (G*f~)(-x-xj(t))coj 

j= 1 

where * represents convolution. Therefore, if we use (2.1), we have 

N a(G*fa) 
N u,= 1 - awv (X-Xj(tj)Oj, u2= c 

j= 1 j= 1 
a(Ga:““’ (x - Xj( t)) oj. 

(2.4) 

If we denote KS, = -8(G * fd)/av, K6> = CJ(G * ji))/~.?x, and K, = (&,, &), we arrive 
at (1.2). Thus, the velocity field in the vortex method is that which is obtained by 
analytically solving (2.1) and (2.2) and assuming that the vorticity distribution is a 
sum of blobs (2.3). We remark that the formula for Kd can be computed explicitly if 
fs depends on r alone. (See’ [4, 14-J.) 

The first step in our method is to compute the velocity field due to a distribution 
of point vortices and evaluate this velocity field at the centers of all the other vor- 
tices. Specifically, we wish to compute 

u(s,(t), t)= f K(.Y,(+x,(t))0+ (2.5) 
.j= I 

where K= (l/27&)(-y, x) and i= 1 ... N. We remark that this is the velocity field 
that is due to a distribution of vorticity given by 

O(X, t) = f 6(x-.yj(t) j wj 
.j- I 

where in this context 6 is Dirac’s delta function. For clarity of exposition we will 
only consider the problem of finding the first component, ui, of the velocity field. 
The first step of our method consists of two parts: 

(la) Obtain values of the velocity at the nodes of a grid covering the com- 
putational domain. 

(lb) Interpolate the values of the velocity from these grid nodes to the cen- 
ters of the vortices. 

Our procedure for step (la) is most easily presented if we assume that we have 
only one pont vortex. We assume that our computational grid is centered at the 
origin and has mesh width 11 in each direction. Without loss of generality -we also 
assume that the vortex is located in the region [-h/2, h/2] x [-h/2, h/2] about the 



FAST VORTEX VELOCITY CALCULATION 115 

origin. (It need not be centered on a grid node.) For a collection of vortices one 
uses the principle of superposition and the linearity of the problem. 

Our goal in step (la) is to find the first component of the velocity field, ui, at the 
nodes of the computational grid. Assume, for the sake of discussion. that we have 
the values of the velocity at the nodes and consider the grid function defined by 

where 4” is an approximation to the discrete Laplacian. Since uI is harmonic at all 
points but the vortex center, d”u,(i,h, i,hj will be a function whose values become 
small away from that point. In fact, if the discrete Laplacian is of order Q(hk). then 
the values of d’u,(i,h, i,k) will be O(lzk). Therefore, if one considers the function 
g,(i,h, i2h) defined by 

g,(i,h, ilh) = 43&h, i,h) for i,, i, s.t. li,lzi <D and li,hl CD 

=o for 
(2.7) 

i,, i2 s.t. (i,h( 3 D or jizizl > D 

then g, is an O(@) approximation to dhu,(i,lz, izlz). 
One can obviously recover the values of uI by inverting the discrete Laplacian 

with (2.6) as a right-hand side. Since g,(i,h, i,h) is an approximation to (2.6), one 
can obtain an approximation, ii,(i,h, i,h), to u,(i,h, i2h) by solving 

d%,(i,h, i?h)= g,(i,h, izh) 12.8) 

and setting G,(i,lz, i2h) = u,(i, h, i,hj for points on the boundary of the com- 
putational grid. Choosing larger values of D and solving (2.3 j will yield better and 
better approximations to u,(i,h, i,h). Also for a fixed D, increasing the accuracy of 
the Laplacian, and hence the accuracy with which g, approximates (2.6), will 
increase the accuracy of the approximation of 11 1. 

In our calculations, we used the above scheme to generate approximations to the 
velocity at the grid nodes. A 9-point “box” approximation to the Laplacian [Ii ] 
was used. Since we are approximating the Laplacian of a harmonic function. the 
“box” approximation is 0(/r”). To obtain the values of FIN necessary to construct g, 
and the boundary values for 6, , we used (2.4). In the second section we present 
computational results concerning the accuracy of the velocities determined in this 
way for various values of D. We mention that this procedure for obtaining the 
velocities is similar in approach to that employed by Mayo [17] for obtaining the 
potential due to a charge distribution on the boundary of an irregular domain. 

The next part is to interpolate the velocity field to the centers of the other VOK- 
tices. This is essentially the problem of interpolating the velocities to intragrid 
points. Any of the family of interpolation schemes presented in [13] could be used 
in this step. However, one can use a special feature of the velocity field due to a 
point vortex to obtain high-order-accurate interpolation formulas. Specifically, 
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away from the center of the vortex the two components of the velocity field form 
the real and imaginary parts of a complex analytic function given by 

F(z) = uI - iu,. (2.9) 

Here we are identifying the complex plane with the x-y plane, i.e., z=x+ 6~. That 
the function defined by (2.9) is analytic follows from the fact that the velocity field 
satisfies the equations 

i.e., the Cauchy-Riemann equations for the function (2.9). The usefulness of using 
the complex representation of the velocity field is that one can obtain an inter- 
polation formula for the velocity field by taking the real and imaginary parts of any 
interpolation formula for complex functions. Interpolating a function in the com- 
plex plane is analogous to the interpolation of real valued functions of one variable. 
In particular, the Lagrangian interpolation formula holds (see [lo]). Given n 
points in the complex plane, zi, i= 1, ~1, an interpolation formula for the function 
F(z) is 

WO? 

If the points zi are at adjacent nodes of a grid with sides of length h, then the 
accuracy of the interpolation formula (2.10) is approximately O(P). Thus by using 
the real and imaginary parts of the interpolation formula (2.10); we are able to 
determine each component of the velocity field to O(P) accuracy with just y1 points. 
For example, with four points one gets fourth-order accuracy. This should be con- 
trasted with bilinear interpolation applied to each component separately. Such an 
interpolation also uses four points but is only second-order accurate. 

We remark that very near the center of a vortex, the interpolation formula will 
not do well because of the singularity in the complex function defined by a point 
vortex. The constants in the error estimate for a formula of the type (2.10) are 
inversely proportional to the distance between the interpolation points and the 
nearest singularity. Fortunately, this inaccuracy in the interpolation can be 
tolerated, since the velocity field is going to be corrected in the neighborhood of the 
center of the vortex in the second step of the method. This particular error is not 
solely related to the interpolation formula (2.10); we would also expect large errors 
if we used other interpolation formulas at points near the center of the vortex. This 
completes the description of the first step. 

The second step in the method is to locally correct the velocities obtained in the 
first step. For a given vortex, the correction consists of subtracting the component 
of its velocity which is due to interpolating the velocity field of nearby vortices and 
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then adding the correct velocity due to the nearby vortices, i.e., the correction step 
for the jth vortex is defined by 

velocity correction for jth vortex 

exact velocity contribution interpolated velocity contribution 
= due to vortices such - due to vortices such (2.11) 

that Ixi(t)-xi(t)1 <C that i-xi(t) - x,(t)1 < C 

and C is a parameter to be determined. 
The exact velocity contribution is computed using (2.4). To calculate the inter- 

polated velocity contribution, one first finds the values of the velocity induced by 
nearby vortices at the set of nodes used in the interpolation formula for thejth vor- 
tex, These velocities are evaluated using (2.4). The interpolation formula for the jth 
vortex is applied to these node velocities and the result is the local contribution to 
the interpolated velocity held. 

There is one aspect of this last step that requires some care. In particular, one 
must determine which vortices are near to, and which are far from, a given vortex. 
If one determines this by computing the distance between a vortex and all its 
neighbors, then one increases the operation count of the method to O(P). A 
solution to this difficulty is a link-listing technique which is described in [IS]. The 
basic idea is to cover the computational domain with a grid of mesh width h-, a 
“chaining mesh.” (The width h used to calculate the velocities need not be equal to 
k.) Each vortex is given a tag which indicates which grid box of the chaining mesh 
the vortex resides in. The tags, and hence the vortices, are sorted, and ail the vor- 
tices with the same tag are linked together with a linked list. To determine which 
vortices are within a given radius of a vortex reduces to finding which grid boxes 
are within that radius. Once the grid boxes are found, then using the linked list of 
vortices for those boxes, one knows the vortices that are within the radius of the 
given vortex. A description, more detailed than that in 1151, is given in [l-7], 

In summary, to compute the velocity of each of the vortices we consider the com- 
putational domain covered by a grid of mesh spacing h. We then use a fast elliptic 
solver to find the solution to 

d%i,(i,lz, i2h) = i g4 (2.12) 

where g,, is the grid function for thejth vortex defined by (2.7). Similarly, we find 
an approximation to the second component of the velocity field, ii2. We then inter- 
polate ii, and ii2 using an interpolation formula of the type (2.10), and obtain an 
approximation to the velocity at the vortices. In order to improve the accuracy of 
the approximate velocities we use formula (2.11) to correct the velocity for each 
vortex. Accumulating the right-hand sides of (2.12) requires O(N) operations and 
the correction calculation requires approximately OjlV) operations. If we assume 
that the discrete Laplacian in (2.12) is solved in O(Mlog M) operations (M = the 
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TABLE1 

D 

Ih 
211 
3h 
3h 

Relative error in u velocity 

2.52 x 10-l 
6.06 x lo- 
1.99 x 10-j 
3.16 x 1O-6 

number of nodes of the grid of mesh width h in the computational domain), then 
the total operation count is O(N) + O(M log M). 

COMPUTATIONAL EXAMPLES 

To test the effect of the parameter D in g, defined by (2.7), we calculated the 
velocity field due to a single point vortex of unit strength. We solved (2.12) for 
various values of D and compared it to the exact velocity field computed using 
(2.4). We measured the error in the discrete L* norm, i.e., the norm defined by 

where the sum is over all grid points in the computational domain. The grid used 
was a 30 x 30 grid with mesh width h =O.l. The results of this calculation are 
presented in Table I. Clearly, D need not be chosen large to achieve accuracy in the 
computed velocity. 

To illustrate the combined effect of the parameter D and the interpolation error, 
in Fig. 1 we plot the logarithm of the absolute error in the first component of the 
velocity field along a ray emanating from the center of the vortex and parallel to the 
x-axis. The different graphs represent the error for different values of D. The grid 
points labeled are those corresponding to the computational grid used in the dis- 
cretization of (2.12). The velocities between the grid nodes were obtained using a 
Spoint interpolation formula given by (2.10). 

From the ligure we see that the error is concentrated near the center of the vor- 
tex. This is to be expected since it is near this point that the error in the inter- 
polation formula becomes significant. 

The effect of correcting the velocity field about the center of the vortex is 
exhibited in Fig. 2. Here we present graphs of the errors for the same problem as 
that used to obtain Fig. 1, but with the correction calculation preformed. As expec- 
ted, the correction calculation reduces the errors in the velocity field about the cen- 
ter of the vortex. 

Errors in velocity along other rays varied in a qualitatively and quantitatively 
similar fashion. The only noticeable difference in results occurred in the analog of 
Fig. 1. For other ray directions, the rapid decrease in error at distances which were 
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F:G. 1. Log,, of the absolute error in the first component of the cslocity as a function of distance 
away from the center of a vortex blob. The curves correspond to dikren : choices of the parameter D iE 

j2.7).D=h:---;D=7/1:...rD=3/1:---;D=4k:.-.. 

FIG. 2. Log,, of the absolute error in the first component of the velocity as a function of the distance 
away from the center of a vortex blob, when the correction calculations are preformed. The curves 
correspond to different choices of the parameter C defined by t2.11). C = h: - -; C = 3: “‘: C = 312: 
-; C=Gh: .~., 
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integral multiples of h did not occur. This is to be expected, since a ray along the 
x-axis crosses nodes of the interpolation formula, and at these points the error of 
the interpolation formula is zero. (The error is only due to that of approximating 
the velocities at the grid nodes.) 

To determine if our method is capable of preserving the effects of using higher- 
order-accurate blobs, such as those presented in [4], we compared two 
approximate solutions obtained with the vortex method on the same test problem. 
In one approximation, (1.2) was used to calculate the velocity field in the vortex 
method, and in the other approximation, our method was used. The test problem 
consisted of finding the solution of Euler’s equations with an initial vorticity dis- 
tribution given by 

w(x, 0) = a( 1 - (2r)q7, r<+ 

= 0, r>f 

with r = (x2 + JI’)“~ and a = 471. Since this initial vorticity distribution is radially 
symmetric, one can find an exact solution to this problem with which to compare 
the computed solutions. We tested two different blob functions: 

fs= l %z’ 
r<S 

(3.1) 
= 0, r-26 

(3.2) 

The first function was suggested by Chorin in [7] and the second is a higher-order 
blob function suggested by Beale and Majda in [4]. To implement the vortex 
method we initially placed the vortices on the nodes of a grid of mesh width 
Ax=O.O43. Designating the nodes by xi, we set each of the strengths, oi, equal to 
Ax2 w(xi, 0). We chose the core parameter to be 6 = (Ax)~.~‘. The ordinary differen- 
tial equations (1.1) were integrated using a 4th-order Runge-Kutta scheme, with a 
time step At = 0.1. This time step was small enough so that a decrease in step size 
had an insignificant effect on the results. We calculated the solution of the problem 
to time t = 1.0. This time corresponded to a maximal point rotation of 271 radians, 
i.e., one revolution. In the implementation of our method for calculating the 
velocity we used a 20 x 20 grid with mesh width h = 0.1 in each direction, and the 
parameter D of (2.7) was equal to the correction distance C of (2.11). 

To measure the error we compared the positions of the centers of the vortex 
blobs with the positions of the material points associated with them at time t = 0 
and which were moved according to the exact solution. We defined the error to be 

(Ax) (,fl ( 

li2 

computed ‘yj( t) - exact -xj( t))” 
> 
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TABLE II 
Error in Particle Positions at time t= 1 

Formula 
(1.1) C= lh 

Local corrections 

C= 2h C=3h 

Chorin 
fLlnct1on (3.1) 

Beale-Majda 
function (3.2) 

8.36 x 10-j 8.59 x 10-j 8.35 x 10-j 8.36x lo-’ 

4.15 x LO-’ 4.32x to-3 4.14 x Lo-: 4.14x Lo-’ 

where the number of vortices, N, is the number of nodes of mesh width dx in the 
support of the initial vorticity distribution. The results of the computations for both 
of the blob functions and for several values of the correction radius C are given in 
Table II. 

The results demonstrate that our method is capable of preserving the effects of 
higher-order-accurate vortex blobs. We also see that one need not choose the 
correction distance very large to obtain an accurate solution. It appears that the 
choice C= D = h is sufftcient to obtain an accurate approximation to the velocity. 

Finally, as a measure of the computational efficiency of our method we compared 
the amount of time spent in using (1.2) and our method to compute the velocity of 
various numbers of vortices which were uniformly distributed in the region 
LO, 1) x [O, 13. In Fig. 3 we have plotted the CPU time (in CDC 7600 seconds) ver- 
sus the number of vortices for both methods of calculation. As expected, the 
amount of time it takes to do the calculation using (1.2) is proportional to NZ. For 
our method we see that the amount of time is nearly linear with IV, while increasing 
the number of corrections shifts the whole curve upwards. Of particular interest is 
the number of vortices for which the amount of computational time for both 
methods is the same. This number is approximately 350, 500, and 825 vortices for G 
equal to h, Ziz, and 3h, respectively. Clearly, for numbers of vortices greater than 
this number it is more advantageous to use our method instead of (1.2). Although 
this number is dependent upon this specific problem as well as the choice of 
parameters D, C, and the mesh size, we believe that these results give reasonable 
estimates of it. 

In summary, for computations that involve more than a few hundred vortices our 
method reduces the amount of computational time used in the vortex method 
without sacrificing too much accuracy. Our method is also capable of preserving 
the effects of using higher-order-accurate vortex blobs. The method described here 
is -useful for calculating the velocity field due to a distribution of vortex “blobs” in 
an unbounded domain. A simple extension of the method would make it applicable 
to problems in which periodic or no-flux boundary conditions are present” (Essen- 
tially one needs to change the boundary conditions in the fast solver used to invert 
the discrete Laplacian in (2.7).) The use of other boundary conditions can be expec- 
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FIG. 3. CPU seconds versus the number of vortices for different values of the correction parameter C 
defined by (2.11). Formula (1.1): --; local corrections, C=h: ---; local corrections, C=Zh: .-.; 
local corrections, C = 3k: .... 

ted to decrease the amount of computational time since the velocities on the boun- 
daries need not be calculated in these instances. We believe that many of the ideas 
presented here can be used in other situations; in particular they might be incor- 
porated in existing fast-velocity algorithms (such as particle in cell methods), or be 
used in algorithms for accelerating vortex methods in three dimensions. 

ACKNOWLEDGMENTS 

I would like to thank Professor Alexandre Chorin and Claude Greengard for their helpful comments 

on an early version of this work. 

REFERENCES 

1. C. R. ANDEKSON AND C. GREENGARD, SIAM J. ~Vumzr. Anal. 22 (1985), 413. 
2. J. T. BEALE .4ND A. J. MAJDA, “Transonic, Shock, and Multidimensional Flows: Advances in Scien- 

tific Computing,” p. 329, Academic Press, New York, 1982. 
3. J. T. BEALE AND A. J. MAJDA. Marh. Cmp. 39 (1982), 59. 
4. J. T. BEALE .~ND A. J. MAJDA, J. Cotnput. Phw., in press. 
5. C. K. BIRDSALL AND D. Fuss, J. Comput. PhJx 3 (1969), 494. 
6. 0. BUMEMAN, J. Comput. Phys. 11 (1973 j, 250. 



FAST VORTEX VELOCITY CALCULATION 1’97 1’2 

1. A. 5. CHORIN, J. Fluid Mech. 51 (1973), 785. 
8. A. J. CHORIN, SIAM J. Sci. Srarisr. Cmpuf. 1 (1980), 1. 
9. J, P. CHRISTIANSEN, .I. Comput. Phys. 13 (1973). 363. 

10. J, P. DAVIS, “Interpolation and Approximation,” Dover, New York, 1975. 
II. G. DAHLQLJIST AND A. BJORCK, “Numerical Methods,” Prentice-Hall. Englewood Cliffs, N.J,, 1974. 
12. J. W. EASTWARD AND R. W. HOCKNEY. J. Cmput. Phys. 16 (1974), 342. 
13. J. W. EAST~OOD AND R. W. HOCKNEY. “Computer Simulation Using Particles,” McGraw-Hill. New 

York, 1981. 
14. 0. HALD, SLIM J. Mmer. .&al. 16 (1979), 716. 
15. R. W. HOCKNEY, S. P. GOEL. AND J. W. EASTWOOD. J. Compu. Pi~,m. I4 (1974). 148. 
16. A. LEONARD. d. Comput. Phys. 37 (1980). 289. 
17. A. MAYO. SZAlll J. Numer. Anal. 21 (1981), 255. 
15. M. PERLMAN. Ph.D. thesis, University of California at Berkeiey. 1983. 


